## Paper / Subject Code: 37005 / OPERATING SYSTEMS

T.E. SEM VI / ELTL / CREDIT BASE / MAY 2019 / 03.06.2019

(3 Hours)



[Total Marks: 80]

- N.B. (1) Question No. 1 is compulsory
  - (2) Assume suitable data if necessary
  - (3) Attempt any three questions from remaining questions

1

- (5) (a) Draw and explain process state transition diagram. (5) (b) What is kernel of an Operating System? Explain different types of kernels.
- (c) Explain the concept of segmentation. (5) (5)
- (d) What are the characteristics of a Real Time OS?
- 2 (a) Consider the following set of processes with CPU burst time given in (10)milliseconds.

| Process | Burst time | Arrival time |
|---------|------------|--------------|
| P1      | 10         | 1            |
| P2      | 4          | 2            |
| P3      | 5          | 3            |
| P4      | 3          | 4            |

Draw Gantt chart for FCFS and Shortest Remaining Time First (SRTF) and calculate average waiting time and average turnaround time.

- (10)(b) Explain how logical address is translated into physical address using paging mechanism with the help of a diagram.
- 3 (a) Explain Buddy algorithm in LINUX memory management. (10)
- (b) Consider the following snapshot (10)

| Process | Allo | cation | 1 | Ma | X |   | Ava | ilable |   |
|---------|------|--------|---|----|---|---|-----|--------|---|
|         | Α    | В      | С | Α  | В | С | Α   | В      | С |
| P0      | 1    | 3      | 5 | 0  | 6 | 5 | 1   | 3      | 5 |
| P1      | 1    | 0      | 0 | 2  | 1 | 3 |     |        |   |
| P2      | 2    | 0      | 1 | 3  | 4 | 6 |     |        |   |
| P3      | 4    | 1      | 1 | 1  | 5 | 7 |     |        |   |
| P4      | 5    | 4      | 3 | 0  | 0 | 1 | 1 1 |        |   |

Answer the following using Banker's algorithm.

- (i) What is the content of matrix Need?
- (ii) Is the system in the safe state?
- (iii) If the request from process P1 arrives for (0, 4, 2, 0) can request be granted immediately?

## Paper / Subject Code: 37005 / OPERATING SYSTEMS

| 4 (a) Explain the working of EDF and RMA real time scheduling algorithms.                                                         | (10)  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|
| (b) Calculate page hit and page miss for the following string using page replacement policies FIFO and LRU. Page frame size is 3. | (10)  |
| 1,2,3,2,1,5,2,1,6,2,5,6,3,1,3,6,1,2,4,3                                                                                           |       |
| 5 (a) Explain Disk Arm Scheduling algorithms.                                                                                     | (10)  |
| (b) What is semaphore? Give an implementation of bounded buffer producer consumer problem using semaphore.                        | (10)  |
| 6 (a) What are system calls? Explain any five system calls.                                                                       | (10)  |
| (b) Explain how UNIX performs file management using I-nodes.                                                                      | (10)  |
| (b) Explain flow of the performs the management doing thousand                                                                    | 77.25 |